Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Environmental Chemical Engineering ; 10(4), 2022.
Article in English | Scopus | ID: covidwho-1945561

ABSTRACT

Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. © 2022 Elsevier Ltd.

2.
SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2021 ; : 23-28, 2022.
Article in English | Scopus | ID: covidwho-1627075

ABSTRACT

In the day we fight against Covid-19, the use of disposable masks and isolation clothing is multiplied by 12 compared to the time before the Covid-19 pandemic. Considering that these disposable masks are made of polypropylene (PP), an average of 480 kilotons of PP waste is produced each year, exclusively from masks. After the use of these masks, it is important to collect and re-evaluate them in a controlled manner so as not to pose a risk of contamination and not to threaten the environment. Because of its advantageous properties, PP is used in the production of many parts in the automotive industry. With this study, it is aimed to develop composite materials to be used in car bumper manufacturing by using recycled PP obtained from melt blown PP fabrics (surgical mask fabric). Due to accidents or road conditions, impact damage can occur on the bumpers. Therefore, the impact resistance of the bumpers must be improved. In addition, in case of microscale damage resulting from the impacts received, microcracks may develop and cause material failure below the maximum tensile stress. In summary, effective reinforcements should be used to improve impact strength in composites for use in car bumpers. Accordingly, novel recycled PP (rPP) based composites are manufactured by using elastomer-styrene-ethylene-butylene-styrene (SEBS) and graphene nanoplatelets (GnPs) as compatible reinforcements with rPP. As experimental characterization, three-point bending tests and Charpy impact tests were carried out. Incorporation of GnPs increased the flexural strength and blending with SEBS improved the impact resistance of the developed composites. Certain clusters of the graphene nanoplatelets were observed by means of microscopy. © 2022, The Society for Experimental Mechanics.

3.
Polymers (Basel) ; 12(11)2020 Nov 17.
Article in English | MEDLINE | ID: covidwho-934944

ABSTRACT

In a singular period, such as during a pandemic, the use of personal protective masks can become mandatory for all citizens in many places worldwide. The most used device is the disposable mask that, inevitably, generates a substantial waste flow to send to incineration or landfill. The article examines the most diffused type of disposable face mask and identifies the characteristic of the constituent materials through morphological, chemical, physical, and thermal analyses. Based on these investigations, a mechanical recycling protocol with different approaches is proposed. Advantages and disadvantages of the different recycling solutions are discussed with considerations on necessary separation processes and other treatments. The four solutions investigated lead to a recycling index from 78 to 91% of the starting disposable mask weight. The rheological, mechanical, and thermo-mechanical properties of the final materials obtained from the different recycling approaches are compared with each other and with solutions present on the market resulting in materials potentially industrially exploitable.

SELECTION OF CITATIONS
SEARCH DETAIL